Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic properties of the derivative of self-intersection local time of fractional Brownian motion (1512.07219v1)

Published 22 Dec 2015 in math.PR

Abstract: Let ${B_{t}}{t\geq0}$ be a fractional Brownian motion with Hurst parameter $\frac{2}{3}<H<1$. We prove that the approximation of the derivative of self-intersection local time, defined as \begin{align*} \alpha{\varepsilon} &= \int_{0}{T}\int_{0}{t}p'{\varepsilon}(B{t}-B_{s})\text{d}s\text{d}t, \end{align*} where $p_\varepsilon(x)$ is the heat kernel, satisfies a central limit theorem when renormalized by $\varepsilon{\frac{3}{2}-\frac{1}{H}}$. We prove as well that for $q\geq2$, the $q$-th chaotic component of $\alpha_{\varepsilon}$ converges in $L{2}$ when $\frac{2}{3}<H<\frac{3}{4}$, and satisfies a central limit theorem when renormalized by a multiplicative factor $\varepsilon{1-\frac{3}{4H}}$ in the case $\frac{3}{4}<H<\frac{4q-3}{4q-2}$.

Summary

We haven't generated a summary for this paper yet.