Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Functional limit theorem for the self-intersection local time of the fractional Brownian motion (1701.05289v1)

Published 19 Jan 2017 in math.PR

Abstract: Let ${B_{t}}{t\geq0}$ be a $d$-dimensional fractional Brownian motion with Hurst parameter $0<H<1$, where $d\geq2$. Consider the approximation of the self-intersection local time of $B$, defined as \begin{align*} I{T}{\varepsilon} &=\int_{0}{T}\int_{0}{t}p_{\varepsilon}(B_{t}-B_{s})dsdt, \end{align*} where $p_\varepsilon(x)$ is the heat kernel. We prove that the process ${I_{T}{\varepsilon}-\mathbb{E}\left[I_{T}{\varepsilon}\right]}_{T\geq0}$, rescaled by a suitable normalization, converges in law to a constant multiple of a standard Brownian motion for $\frac{3}{2d}<H\leq\frac{3}{4}$ and to a multiple of a sum of independent Hermite processes for $\frac{3}{4}<H<1$, in the space $C[0,\infty)$, endowed with the topology of uniform convergence on compacts.

Summary

We haven't generated a summary for this paper yet.