Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Central limit theorems for the derivatives of self-intersection local time for $d$-dimensional Brownian motion (2403.10483v1)

Published 15 Mar 2024 in math.PR

Abstract: Let ${B_t,t\geq0}$ be a d-dimensional Brownian motion. We prove that the approximation of the higher derivative of renormalized self-intersection local time $$ \int_{0}{1}\int_{0}{s}\left(p{(|k|)}{d,\epsilon}(B{s}-B_{r})-E[p{(|k|)}{d,\epsilon}(B{s}-B_{r})]\right)drds, $$ where the multiindex $k=(k_{1},\cdots,k_{d})$, $ p_{d,\epsilon}{(|k|)}(x_1,x_2,\cdots,x_d):=\partial{k_1}{x_1}\partial{k_2}{x_2}$ $\cdots\partial{k_d}{x_d}p{d,\epsilon}(x_1,x_2,\cdots,x_d)$ and $p_{d,\epsilon}(x)=\frac{1}{(2\pi\epsilon){d/2}}e{-\frac{|x|{2}}{2\epsilon}}, x\in\mathbb{R}d$, satisfies the central limit theorems when renormalized by $(\log\frac{1}{\epsilon}){-1}$ in the case $d=2$, $|k|=1$ and by $\epsilon{\frac{d+|k|-3}{2}}$ in the case $d\geq 3$, $|k|\geq 1$, which gives a complete answer to the conjecture of Markowsky [In S\'{e}minaire de Probabiliti\'{e}s \uppercase\expandafter{\romannumeral10\romannumeral50\romannumeral4} (2012) 141-148 Springer]. We as well prove that its m-th Wiener chaotic component satisfies the central limit theorems when renormalized by a multiplicative factor in different cases.

Citations (1)

Summary

We haven't generated a summary for this paper yet.