A Robust Multigrid Method for Isogeometric Analysis using Boundary Correction
Abstract: We consider geometric multigrid methods for the solution of linear systems arising from isogeometric discretizations of elliptic partial differential equations. For classical finite elements, such methods are well known to be fast solvers showing optimal convergence behavior. However, the naive application of multigrid to the isogeometric case results in significant deterioration of the convergence rates if the spline degree is increased. Recently, a robust approximation error estimate and a corresponding inverse inequality for B-splines of maximum smoothness have been shown, both with constants independent of the spline degree. We use these results to construct multigrid solvers for discretizations based on B-splines with maximum smoothness which exhibit robust convergence rates.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.