Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Lossless error estimates for the stationary phase method with applications to propagation features for the Schrödinger equation (1512.05940v1)

Published 18 Dec 2015 in math.AP

Abstract: We consider a version of the stationary phase method in one dimension of A. Erd\'elyi, allowing the phase to have stationary points of non-integer order and the amplitude to have integrable singularities. After having completed the original proof and improved the error estimate in the case of regular amplitude, we consider a modification of the method by replacing the smooth cut-off function employed in the source by a characteristic function, leading to more precise remainder estimates. We exploit this refinement to study the time-asymptotic behaviour of the solution of the free Schr\"odinger equation on the line, where the Fourier transform of the initial data is compactly supported and has a singularity. We obtain asymptotic expansions with respect to time in certain space-time cones as well as uniform and optimal estimates in curved regions which are asymptotically larger than any space-time cone. These results show the influence of the frequency band and of the singularity on the propagation and on the decay of the wave packets.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube