Papers
Topics
Authors
Recent
2000 character limit reached

An Empirical Comparison of Neural Architectures for Reinforcement Learning in Partially Observable Environments (1512.05509v1)

Published 17 Dec 2015 in cs.NE, cs.AI, and cs.LG

Abstract: This paper explores the performance of fitted neural Q iteration for reinforcement learning in several partially observable environments, using three recurrent neural network architectures: Long Short-Term Memory, Gated Recurrent Unit and MUT1, a recurrent neural architecture evolved from a pool of several thousands candidate architectures. A variant of fitted Q iteration, based on Advantage values instead of Q values, is also explored. The results show that GRU performs significantly better than LSTM and MUT1 for most of the problems considered, requiring less training episodes and less CPU time before learning a very good policy. Advantage learning also tends to produce better results.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.