Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Bielliptic ball quotient compactifications and lattices in PU(2, 1) with finitely generated commutator subgroup (1512.03049v3)

Published 9 Dec 2015 in math.GT, math.AG, and math.DG

Abstract: We construct two infinite families of ball quotient compactifications birational to bielliptic surfaces. For each family, the volume spectrum of the associated noncompact finite volume ball quotient surfaces is the set of all positive integral multiples of $\frac{8}{3}\pi{2}$, i.e., they attain all possible volumes of complex hyperbolic $2$-manifolds. The surfaces in one of the two families have all $2$-cusps, so that we can saturate the entire volume spectrum with $2$-cusped manifolds. Finally, we show that the associated neat lattices have infinite abelianization and finitely generated commutator subgroup. These appear to be the first known nonuniform lattices in $\mathrm{PU}(2,1)$, and the first infinite tower, with this property.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.