Bielliptic ball quotient compactifications and lattices in PU(2, 1) with finitely generated commutator subgroup (1512.03049v3)
Abstract: We construct two infinite families of ball quotient compactifications birational to bielliptic surfaces. For each family, the volume spectrum of the associated noncompact finite volume ball quotient surfaces is the set of all positive integral multiples of $\frac{8}{3}\pi{2}$, i.e., they attain all possible volumes of complex hyperbolic $2$-manifolds. The surfaces in one of the two families have all $2$-cusps, so that we can saturate the entire volume spectrum with $2$-cusped manifolds. Finally, we show that the associated neat lattices have infinite abelianization and finitely generated commutator subgroup. These appear to be the first known nonuniform lattices in $\mathrm{PU}(2,1)$, and the first infinite tower, with this property.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.