Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Online Gradient Descent in Function Space (1512.02394v2)

Published 8 Dec 2015 in cs.LG

Abstract: In many problems in machine learning and operations research, we need to optimize a function whose input is a random variable or a probability density function, i.e. to solve optimization problems in an infinite dimensional space. On the other hand, online learning has the advantage of dealing with streaming examples, and better model a changing environ- ment. In this paper, we extend the celebrated online gradient descent algorithm to Hilbert spaces (function spaces), and analyze the convergence guarantee of the algorithm. Finally, we demonstrate that our algorithms can be useful in several important problems.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube