The Cantor-Bendixson Rank of Certain Bridgeland-Smith Stability Conditions (1512.02336v3)
Abstract: We provide a novel proof that the set of directions that admit a saddle connection on a meromorphic quadratic differential with at least one pole of order at least two is closed, which generalizes a result of Bridgeland and Smith, and Gaiotto, Moore, and Neitzke. Secondly, we show that this set has finite Cantor-Bendixson rank and give a tight bound. Finally, we present a family of surfaces realizing all possible Cantor-Bendixson ranks. The techniques in the proof of this result exclusively concern Abelian differentials on Riemann surfaces, also known as translation surfaces. The concept of a "slit translation surface" is introduced as the primary tool for studying meromorphic quadratic differentials with higher order poles.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.