Papers
Topics
Authors
Recent
2000 character limit reached

Algorithmic independence of initial condition and dynamical law in thermodynamics and causal inference (1512.02057v1)

Published 7 Dec 2015 in cond-mat.stat-mech, math.ST, quant-ph, and stat.TH

Abstract: We postulate a principle stating that the initial condition of a physical system is typically algorithmically independent of the dynamical law. We argue that this links thermodynamics and causal inference. On the one hand, it entails behaviour that is similar to the usual arrow of time. On the other hand, it motivates a statistical asymmetry between cause and effect that has recently postulated in the field of causal inference, namely, that the probability distribution P(cause) contains no information about the conditional distribution P(effect|cause) and vice versa, while P(effect) may contain information about P(cause|effect).

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.