Papers
Topics
Authors
Recent
2000 character limit reached

Fourier-Mukai Transforms and Stability Conditions on Abelian Varieties (1512.02034v1)

Published 7 Dec 2015 in math.AG

Abstract: This article is based on a talk given at the Kinosaki Symposium on Algebraic Geometry in 2015, about a work in progress. We describe a polarization on a derived equivalent abelian variety by using Fourier-Mukai theory. We explicitly formulate a conjecture which says certain Fourier-Mukai transforms between derived categories give equivalences of some hearts of Bridgeland stability conditions. We establish it for abelian surfaces, which is already known due to D. Huybrechts, and for abelian 3-folds. This generalizes the author's previous joint work with A. Maciocia on principally polarized abelian 3-folds with Picard rank one. Consequently, we see that the strong Bogomolov-Gieseker type inequalities hold for tilt stable objects on abelian 3-folds.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.