Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Approximations of spectra of Schrödinger operators with complex potentials on $\mathbb{R}^d$ (1512.01826v1)

Published 6 Dec 2015 in math.SP, math-ph, math.AP, math.FA, and math.MP

Abstract: We study spectral approximations of Schr\"odinger operators $T=-\Delta+Q$ with complex potentials on $\Omega=\mathbb{R}d$, or exterior domains $\Omega\subset \mathbb{R}d$, by domain truncation. Our weak assumptions cover wide classes of potentials $Q$ for which $T$ has discrete spectrum, of approximating domains $\Omega_n$, and of boundary conditions on $\partial \Omega_n$ such as mixed Dirichlet/Robin type. In particular, ${\rm Re} \, Q$ need not be bounded from below and $Q$ may be singular. We prove generalized norm resolvent convergence and spectral exactness, i.e. approximation of all eigenvalues of $T$ by those of the truncated operators $T_n$ without spectral pollution. Moreover, we estimate the eigenvalue convergence rate and prove convergence of pseudospectra. Numerical computations for several examples, such as complex harmonic and cubic oscillators for $d=1,2,3$, illustrate our results.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.