Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

The Propus Construction for Symmetric Hadamard Matrices (1512.01732v1)

Published 6 Dec 2015 in math.CO

Abstract: \textit{Propus} (which means twins) is a construction method for orthogonal $\pm 1$ matrices based on a variation of the Williamson array called the \textit{propus array} [ \begin{matrix*}[r] A& B & B & D B& D & -A &-B B& -A & -D & B D& -B & B &-A. \end{matrix*} ] This construction designed to find symmetric Hadamard matrices was originally based on circulant symmetric $\pm 1$ matrices, called \textit{propus matrices}. We also give another construction based on symmetric Williamson-type matrices. We give constructions to find symmetric propus-Hadamard matrices for 57 orders $4n$, $n < 200$ odd. We give variations of the above array to allow for more general matrices than symmetric Williamson propus matrices. One such is the \textit{ Generalized Propus Array (GP)}.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.