Papers
Topics
Authors
Recent
Search
2000 character limit reached

Involutions on tensor products of quaternion algebras

Published 3 Dec 2015 in math.RA | (1512.01083v1)

Abstract: We study possible decompositions of totally decomposable algebras with involution, that is, tensor products of quaternion algebras with involution. In particular, we are interested in decompositions in which one or several factors are the split quaternion algebra $M_2(F)$, endowed with an orthogonal involution. Using the theory of gauges, developed by Tignol-Wadsworth, we construct examples of algebras isomorphic to a tensor product of quaternion algebras with $k$ split factors, endowed with an involution which is totally decomposable, but does not admit any decomposition with $k$ factors $M_2(F)$ with involution. This extends an earlier result of Sivatski where the algebra considered is of degree $8$ and index $4$, and endowed with some orthogonal involution.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.