Papers
Topics
Authors
Recent
2000 character limit reached

Shape-constrained uncertainty quantification in unfolding steeply falling elementary particle spectra (1512.00905v4)

Published 2 Dec 2015 in stat.AP, hep-ex, physics.data-an, and stat.ME

Abstract: The high energy physics unfolding problem is an important statistical inverse problem in data analysis at the Large Hadron Collider (LHC) at CERN. The goal of unfolding is to make nonparametric inferences about a particle spectrum from measurements smeared by the finite resolution of the particle detectors. Previous unfolding methods use ad hoc discretization and regularization, resulting in confidence intervals that can have significantly lower coverage than their nominal level. Instead of regularizing using a roughness penalty or stopping iterative methods early, we impose physically motivated shape constraints: positivity, monotonicity, and convexity. We quantify the uncertainty by constructing a nonparametric confidence set for the true spectrum, consisting of all those spectra that satisfy the shape constraints and that predict the observations within an appropriately calibrated level of fit. Projecting that set produces simultaneous confidence intervals for all functionals of the spectrum, including averages within bins. The confidence intervals have guaranteed conservative frequentist finite-sample coverage in the important and challenging class of unfolding problems for steeply falling particle spectra. We demonstrate the method using simulations that mimic unfolding the inclusive jet transverse momentum spectrum at the LHC. The shape-constrained intervals provide usefully tight conservative inferences, while the conventional methods suffer from severe undercoverage.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.