Geometric ergodicity of Rao and Teh's algorithm for Markov jump processes (1512.00736v1)
Abstract: Rao and Teh (2013) introduced an efficient MCMC algorithm for sampling from the posterior distribution of a hidden Markov jump process. The algorithm is based on the idea of sampling virtual jumps. In the present paper we show that the Markov chain generated by Rao and Teh's algorithm is geometrically ergodic. To this end we establish a geometric drift condition towards a small set.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.