Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

On concentration for (regularized) empirical risk minimization (1512.00677v2)

Published 2 Dec 2015 in math.ST and stat.TH

Abstract: Rates of convergence for empirical risk minimizers have been well studied in the literature. In this paper, we aim to provide a complementary set of results, in particular by showing that after normalization, the risk of the empirical minimizer concentrates on a single point. Such results have been established by~\cite{chatterjee2014new} for constrained estimators in the normal sequence model. We first generalize and sharpen this result to regularized least squares with convex penalties, making use of a "direct" argument based on Borell's theorem. We then study generalizations to other loss functions, including the negative log-likelihood for exponential families combined with a strictly convex regularization penalty. The results in this general setting are based on more "indirect" arguments as well as on concentration inequalities for maxima of empirical processes.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube