Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Boundedness of fractional maximal operators on variable Lebesgue spaces over spaces of homogeneous type (1511.09456v1)

Published 30 Nov 2015 in math.CA

Abstract: Given a space of homogeneous type we give sufficient conditions on a variable exponent {p(.)} so that the fractional maximal operator {M_{\eta}} maps {L{p(.)}(X)} to {L{q(.)}(X)}, where {1/p(.) - 1/q(.) = {\eta}}. In the endpoint case we also prove the corresponding weak type inequality. As an application we prove norm inequalities for the fractional integral operator {I_{\eta}}. Our proof for the fractional maximal operator uses the theory of dyadic cubes on spaces of homogeneous type, and even in the Euclidean setting it is simpler than existing proofs. For the fractional integral operator we extend a pointwise inequality of Welland to spaces of homogeneous type. Our work generalizes results from the Euclidean case and extends recent work by Adamowicz, et al. on the Hardy-Littlewood maximal operator on spaces of homogeneous type.

Summary

We haven't generated a summary for this paper yet.