Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fractional maximal operators on weighted variable Lebesgue spaces over the spaces of homogeneous type (2404.15550v3)

Published 23 Apr 2024 in math.CA and math.FA

Abstract: Let $(X,d,\mu)$ is a space of homogeneous type, we establish a new class of fractional-type variable weights $A_{p(\cdot), q(\cdot)}(X)$. Then, we get the new weighted strong-type and weak-type characterizations for fractional maximal operators $M_\eta$ on weighted variable Lebesgue spaces over $(X,d,\mu)$. This study generalizes the results by Cruz-Uribe-Fiorenza-Neugebauer (2012), Bernardis-Dalmasso-Pradolini (2014), Cruz-Uribe-Shukla (2018), and Cruz-Uribe-Cummings (2022).

Citations (1)

Summary

We haven't generated a summary for this paper yet.