Papers
Topics
Authors
Recent
2000 character limit reached

Weighted norm inequalities for the maximal operator on $\Lpp$ over spaces of homogeneous type

Published 21 Jul 2020 in math.CA | (2007.10864v1)

Abstract: Given a space of homogeneous type $(X,\mu,d)$, we prove strong-type weighted norm inequalities for the Hardy-Littlewood maximal operator over the variable exponent Lebesgue spaces $L\pp$. We prove that the variable Muckenhoupt condition $\App$ is necessary and sufficient for the strong type inequality if $\pp$ satisfies log-H\"older continuity conditions and $1 < p_- \leq p_+ < \infty$. Our results generalize to spaces of homogeneous type the analogous results in Euclidean space proved by Cruz-Uribe, Fiorenza and Neugebuaer (2012).

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.