Parametric Integration by Magic Point Empirical Interpolation (1511.08510v2)
Abstract: We derive analyticity criteria for explicit error bounds and an exponential rate of convergence of the magic point empirical interpolation method introduced by Barrault et al. (2004). Furthermore, we investigate its application to parametric integration. We find that the method is well-suited to Fourier transforms and has a wide range of applications in such diverse fields as probability and statistics, signal and image processing, physics, chemistry and mathematical finance. To illustrate the method, we apply it to the evaluation of probability densities by parametric Fourier inversion. Our numerical experiments display convergence of exponential order, even in cases where the theoretical results do not apply.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.