Papers
Topics
Authors
Recent
Search
2000 character limit reached

Variable Selection in Causal Inference using a Simultaneous Penalization Method

Published 26 Nov 2015 in stat.ME | (1511.08501v1)

Abstract: In the causal adjustment setting, variable selection techniques based on one of either the outcome or treatment allocation model can result in the omission of confounders, which leads to bias, or the inclusion of spurious variables, which leads to variance inflation, in the propensity score. We propose a variable selection method based on a penalized objective function which considers the outcome and treatment assignment models simultaneously. The proposed method facilitates confounder selection in high-dimensional settings. We show that under regularity conditions our method attains the oracle property. The selected variables are used to form a doubly robust regression estimator of the treatment effect. We show that under some conditions our method attains the oracle property. Simulation results are presented and economic growth data are analyzed. Specifically, we study the effect of life expectancy as a measure of population health on the average growth rate of gross domestic product per capita.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.