Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 411 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On randomization of neural networks as a form of post-learning strategy (1511.08366v1)

Published 26 Nov 2015 in cs.NE

Abstract: Today artificial neural networks are applied in various fields - engineering, data analysis, robotics. While they represent a successful tool for a variety of relevant applications, mathematically speaking they are still far from being conclusive. In particular, they suffer from being unable to find the best configuration possible during the training process (local minimum problem). In this paper, we focus on this issue and suggest a simple, but effective, post-learning strategy to allow the search for improved set of weights at a relatively small extra computational cost. Therefore, we introduce a novel technique based on analogy with quantum effects occurring in nature as a way to improve (and sometimes overcome) this problem. Several numerical experiments are presented to validate the approach.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.