Papers
Topics
Authors
Recent
Search
2000 character limit reached

$L_\infty$-Algebra Models and Higher Chern-Simons Theories

Published 25 Nov 2015 in hep-th, math-ph, and math.MP | (1511.08201v3)

Abstract: We continue our study of zero-dimensional field theories in which the fields take values in a strong homotopy Lie algebra. In a first part, we review in detail how higher Chern-Simons theories arise in the AKSZ-formalism. These theories form a universal starting point for the construction of $L_\infty$-algebra models. We then show how to describe superconformal field theories and how to perform dimensional reductions in this context. In a second part, we demonstrate that Nambu-Poisson and multisymplectic manifolds are closely related via their Heisenberg algebras. As a byproduct of our discussion, we find central Lie $p$-algebra extensions of $\mathfrak{so}(p+2)$. Finally, we study a number of $L_\infty$-algebra models which are physically interesting and which exhibit quantized multisymplectic manifolds as vacuum solutions.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.