Papers
Topics
Authors
Recent
Search
2000 character limit reached

dNLS Flow on Discrete Space Curves

Published 25 Nov 2015 in nlin.SI | (1511.08076v2)

Abstract: The local induction equation, or the binormal flow on space curves is a well-known model of deformation of space curves as it describes the dynamics of vortex filaments, and the complex curvature is governed by the nonlinear Schr\"odinger equation (NLS). In this paper, we present its discrete analogue, namely, a model of deformation of discrete space curves by the discrete nonlinear Schr\"odinger equation (dNLS). We also present explicit formulas for both NLS and dNLS flows in terms of the $\tau$ function of the 2-component KP hierarchy.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.