Papers
Topics
Authors
Recent
2000 character limit reached

A modular description of $\mathscr{X}_0(n)$ (1511.07475v2)

Published 23 Nov 2015 in math.NT and math.AG

Abstract: As we explain, when a positive integer $n$ is not squarefree, even over $\mathbb{C}$ the moduli stack that parametrizes generalized elliptic curves equipped with an ample cyclic subgroup of order $n$ does not agree at the cusps with the $\Gamma_0(n)$-level modular stack $\mathscr{X}_0(n)$ defined by Deligne and Rapoport via normalization. Following a suggestion of Deligne, we present a refined moduli stack of ample cyclic subgroups of order $n$ that does recover $\mathscr{X}_0(n)$ over $\mathbb{Z}$ for all $n$. The resulting modular description enables us to extend the regularity theorem of Katz and Mazur: $\mathscr{X}_0(n)$ is also regular at the cusps. We also prove such regularity for $\mathscr{X}_1(n)$ and several other modular stacks, some of which have been treated by Conrad by a different method. For the proofs we introduce a tower of compactifications $\overline{Ell}_m$ of the stack $Ell$ that parametrizes elliptic curves---the ability to vary $m$ in the tower permits robust reductions of the analysis of Drinfeld level structures on generalized elliptic curves to elliptic curve cases via congruences.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.