2000 character limit reached
Good, Better, Best: Choosing Word Embedding Context (1511.06312v1)
Published 19 Nov 2015 in cs.CL
Abstract: We propose two methods of learning vector representations of words and phrases that each combine sentence context with structural features extracted from dependency trees. Using several variations of neural network classifier, we show that these combined methods lead to improved performance when used as input features for supervised term-matching.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.