Papers
Topics
Authors
Recent
Search
2000 character limit reached

Optimized Linear Imputation

Published 17 Nov 2015 in stat.ML, stat.AP, stat.CO, and stat.ME | (1511.05309v3)

Abstract: Often in real-world datasets, especially in high dimensional data, some feature values are missing. Since most data analysis and statistical methods do not handle gracefully missing values, the first step in the analysis requires the imputation of missing values. Indeed, there has been a long standing interest in methods for the imputation of missing values as a pre-processing step. One recent and effective approach, the IRMI stepwise regression imputation method, uses a linear regression model for each real-valued feature on the basis of all other features in the dataset. However, the proposed iterative formulation lacks convergence guarantee. Here we propose a closely related method, stated as a single optimization problem and a block coordinate-descent solution which is guaranteed to converge to a local minimum. Experiments show results on both synthetic and benchmark datasets, which are comparable to the results of the IRMI method whenever it converges. However, while in the set of experiments described here IRMI often does not converge, the performance of our methods is shown to be markedly superior in comparison with other methods.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.