Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Derived categories and Deligne-Lusztig varieties II (1511.04714v3)

Published 15 Nov 2015 in math.RT

Abstract: This paper is a continuation and a completion of [BoRo1]. We extend the Jordan decomposition of blocks: we show that blocks of finite groups of Lie type in non-describing characteristic are Morita equivalent to blocks of subgroups associated to isolated elements of the dual group. The key new result is the invariance of the part of the cohomology in a given modular series of Deligne-Lusztig varieties associated to a given Levi subgroup, under certain variations of parabolic subgroups. We also show that the equivalence arises from a splendid Rickard equivalence. Even in the setting of [BoRo1], the finer homotopy equivalence was unknown. As a consequence, the equivalence preserves defect groups and categories of subpairs. We finally determine when Deligne-Lusztig induced representations of tori generate the derived category of representations.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube