Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On relations equivalent to the generalized Riemann hypothesis for the Selberg class (1511.04603v1)

Published 14 Nov 2015 in math.NT

Abstract: In this paper we prove that the Generalized Riemann Hypothesis (GRH) for functions in the class $\mathcal{S}{\sharp\flat}$ containing the Selberg class is equivalent to a certain integral expression of the real part of the generalized Li coefficient $\lambda_F(n)$ associated to $F\in\mathcal{S}{\sharp\flat}$, for positive integers $n$. Moreover, we deduce that the GRH is equivalent to a certain expression of $Re(\lambda_F(n))$ in terms of the sum of the Chebyshev polynomials of the first kind. Then, we partially evaluate the integral expression and deduce further relations equivalent to the GRH involving the generalized Euler-Stieltjes constants of the second kind associated to $F$. The class $\mathcal{S}{\sharp\flat}$ unconditionally contains all automorphic $L$-functions attached to irreducible cuspidal unitary representations of $GL_N(\mathbb{Q})$, hence, as a corollary we also derive relations equivalent to the GRH for automorphic $L$-functions.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.