2000 character limit reached
Estimating a smooth function on a large graph by Bayesian Laplacian regularisation (1511.02515v2)
Published 8 Nov 2015 in math.ST and stat.TH
Abstract: We study a Bayesian approach to estimating a smooth function in the context of regression or classification problems on large graphs. We derive theoretical results that show how asymptotically optimal Bayesian regularization can be achieved under an asymptotic shape assumption on the underlying graph and a smoothness condition on the target function, both formulated in terms of the graph Laplacian. The priors we study are randomly scaled Gaussians with precision operators involving the Laplacian of the graph.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.