Non-relativistic limit of the compressible Navier-Stokes-Fourier-P1 approximation model arising in radiation hydrodynamics (1511.02287v1)
Abstract: As is well-known that the general radiation hydrodynamics models include two mainly coupled parts: one is macroscopic fluid part, which is governed by the compressible Navier-Stokes-Fourier equations, another is radiation field part, which is described by the transport equation of photons. Under the two physical approximations: "gray" approximation and P1 approximation, one can derive the so-called Navier-Stokes-Fourier-P1 approximation radiation hydrodynamics model from the general one. In this paper we study the non-relativistic limit problem for the Navier-Stokes-Fourier-P1 approximation model due to the fact that the speed of light is much larger than the speed of the macroscopic fluid. Our results give a rigorous derivation of the widely used macroscopic model in radiation hydrodynamics.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.