Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Profinite Monads, Profinite Equations, and Reiterman's Theorem (1511.02147v2)

Published 6 Nov 2015 in cs.FL and math.CT

Abstract: Profinite equations are an indispensable tool for the algebraic classification of formal languages. Reiterman's theorem states that they precisely specify pseudovarieties, i.e. classes of finite algebras closed under finite products, subalgebras and quotients. In this paper Reiterman's theorem is generalised to finite Eilenberg-Moore algebras for a monad T on a variety D of (ordered) algebras: a class of finite T-algebras is a pseudovariety iff it is presentable by profinite (in-)equations. As an application, quasivarieties of finite algebras are shown to be presentable by profinite implications. Other examples include finite ordered algebras, finite categories, finite infinity-monoids, etc.

Citations (23)

Summary

We haven't generated a summary for this paper yet.