Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Profinite congruences and unary algebras (2003.00509v1)

Published 1 Mar 2020 in math.GR and cs.LO

Abstract: Profinite congruences on profinite algebras determining profinite quotients are difficult to describe. In particular, no constructive description is known of the least profinite congruence containing a given binary relation on the algebra. On the other hand, closed congruences and fully invariant congruences can be described constructively. In a previous paper, we conjectured that fully invariant closed congruences on a relatively free profinite algebra are always profinite. Here, we show that our conjecture fails for unary algebras and that closed congruences on relatively free profinite semigroups are not necessarily profinite. As part of our study of unary algebras, we establish an adjunction between profinite unary algebras and profinite monoids. We also show that the Polish representation of the free profinite unary algebra is faithful.

Citations (1)

Summary

We haven't generated a summary for this paper yet.