Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Eilenberg Theorems for Free (1602.05831v3)

Published 18 Feb 2016 in cs.FL and math.CT

Abstract: Eilenberg-type correspondences, relating varieties of languages (e.g. of finite words, infinite words, or trees) to pseudovarieties of finite algebras, form the backbone of algebraic language theory. Numerous such correspondences are known in the literature. We demonstrate that they all arise from the same recipe: one models languages and the algebras recognizing them by monads on an algebraic category, and applies a Stone-type duality. Our main contribution is a variety theorem that covers e.g. Wilke's and Pin's work on $\infty$-languages, the variety theorem for cost functions of Daviaud, Kuperberg, and Pin, and unifies the two previous categorical approaches of Boja\'nczyk and of Ad\'amek et al. In addition we derive a number of new results, including an extension of the local variety theorem of Gehrke, Grigorieff, and Pin from finite to infinite words.

Citations (22)

Summary

We haven't generated a summary for this paper yet.