Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 128 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

John's ellipsoid and the integral ratio of a log-concave function (1511.01266v1)

Published 4 Nov 2015 in math.FA

Abstract: We extend the notion of John's ellipsoid to the setting of integrable log-concave functions. This will allow us to define the integral ratio of a log-concave function, which will extend the notion of volume ratio, and we will find the log-concave function maximizing the integral ratio. A reverse functional affine isoperimetric inequality will be given, written in terms of this integral ratio. This can be viewed as a stability version of the functional affine isoperimetric inequality.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.