Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Conditional Value-at-Risk: Theory and Applications (1511.00140v1)

Published 31 Oct 2015 in q-fin.RM and math.OC

Abstract: This thesis presents the Conditional Value-at-Risk concept and combines an analysis that covers its application as a risk measure and as a vector norm. For both areas of application the theory is revised in detail and examples are given to show how to apply the concept in practice. In the first part, CVaR as a risk measure is introduced and the analysis covers the mathematical definition of CVaR and different methods to calculate it. Then, CVaR optimization is analysed in the context of portfolio selection and how to apply CVaR optimization for hedging a portfolio consisting of options. The original contributions in this part are an alternative proof of Acerbi's Integral Formula in the continuous case and an explicit programme formulation for portfolio hedging. The second part first analyses the Scaled and Non-Scaled CVaR norm as new family of norms in $\mathbb{R}n$ and compares this new norm family to the more widely known $L_p$ norms. Then, model (or signal) recovery problems are discussed and it is described how appropriate norms can be used to recover a signal with less observations than the dimension of the signal. The last chapter of this dissertation then shows how the Non-Scaled CVaR norm can be used in this model recovery context. The original contributions in this part are an alternative proof of the equivalence of two different characterizations of the Scaled CVaR norm, a new proposition that the Scaled CVaR norm is piecewise convex, and the entire \autoref{chapter:Recovery_using_CVaR}. Since the CVaR norm is a rather novel concept, its applications in a model recovery context have not been researched yet. Therefore, the final chapter of this thesis might lay the basis for further research in this area.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube