Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Regular patterns, substitudes, Feynman categories and operads (1510.08934v3)

Published 29 Oct 2015 in math.CT, math-ph, math.AT, math.MP, and math.QA

Abstract: We show that the regular patterns of Getzler (2009) form a 2-category biequivalent to the 2-category of substitudes of Day and Street (2003), and that the Feynman categories of Kaufmann and Ward (2013) form a 2-category biequivalent to the 2-category of coloured operads (with invertible 2-cells). These biequivalences induce equivalences between the corresponding categories of algebras. There are three main ingredients in establishing these biequivalences. The first is a strictification theorem (exploiting Power's General Coherence Result) which allows to reduce to the case where the structure maps are identity-on-objects functors and strict monoidal. Second, we subsume the Getzler and Kaufmann--Ward hereditary axioms into the notion of Guitart exactness, a general condition ensuring compatibility between certain left Kan extensions and a given monad, in this case the free-symmetric-monoidal-category monad. Finally we set up a biadjunction between substitudes and what we call pinned symmetric monoidal categories, from which the results follow as a consequence of the fact that the hereditary map is precisely the counit of this biadjunction.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.