Empirical Output Distribution of Good Delay-Limited Codes for Quasi-Static Fading Channels (1510.08544v3)
Abstract: This paper considers delay-limited communication over quasi-static fading channels under a long-term power constraint. A sequence of length-$n$ delay-limited codes for a quasi-static fading channel is said to be capacity-achieving if the codes achieve the delay-limited capacity, which is defined to be the maximum rate achievable by delay-limited codes. The delay-limited capacity is sometimes referred to as the zero-outage capacity in wireless communications. The delay-limited capacity is the appropriate choice of performance measure for delay-sensitive applications such as voice and video over fading channels. It is shown that for any sequence of capacity-achieving delay-limited codes with vanishing error probabilities, the normalized relative entropy between the output distribution induced by the length-$n$ code and the $n$-fold product of the capacity-achieving output distribution, denoted by $\frac{1}{n}D(p_{Yn}|p_{Yn}*)$, converges to zero. Additionally, we extend our convergence result to capacity-achieving delay-limited codes with non-vanishing error probabilities.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.