Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Isoptic surfaces of polyhedra (1510.07718v1)

Published 26 Oct 2015 in math.MG

Abstract: The theory of the isoptic curves is widely studied in the Euclidean plane $\bE2$ (see \cite{CMM91} and \cite{Wi} and the references given there). The analogous question was investigated by the authors in the hyperbolic $\bH2$ and elliptic $\cE2$ planes (see \cite{CsSz1}, \cite{CsSz2}, \cite{CsSz5}), but in the higher dimensional spaces there are only a few result in this topic. In \cite{CsSz4} we gave a natural extension of the notion of the isoptic curves to the $n$-dimensional Euclidean space $\bEn$ $(n\ge 3)$ which are called isoptic hypersurfaces. Now we develope an algorithm to determine the isoptic surface $\mathcal{H}_{\cP}$ of a $3$-dimensional polytop $\mathcal{P}$. We will determine the isoptic surfaces for Platonic solids and for some semi-regular Archimedean polytopes and visualize them with Wolfram Mathematica.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.