Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Bootstrap Likelihood approach to Bayesian Computation (1510.07287v1)

Published 25 Oct 2015 in stat.ME

Abstract: There is an increasing amount of literature focused on Bayesian computational methods to address problems with intractable likelihood. One approach is a set of algorithms known as Approximate Bayesian Computational (ABC) methods. One of the problems of these algorithms is that the performance depends on the tuning of some parameters, such as the summary statistics, distance and tolerance level. To bypass this problem, Mengersen, Pudlo and Robert (2013) introduced an alternative method based on empirical likelihood, which can be easily implemented when a set of constraints, related to the moments of the distribution, is known. However, the choice of the constraints is sometimes challenging. To overcome this problem, we propose an alternative method based on a bootstrap likelihood approach. The method is easy to implement and in some cases it is faster than the other approaches. The performance of the algorithm is illustrated with examples in Population Genetics, Time Series and Stochastic Differential Equations. Finally, we test the method on a real dataset.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.