2000 character limit reached
Concave Quadratic Cuts for Mixed-Integer Quadratic Problems (1510.06421v2)
Published 21 Oct 2015 in math.OC
Abstract: The technique of semidefinite programming (SDP) relaxation can be used to obtain a nontrivial bound on the optimal value of a nonconvex quadratically constrained quadratic program (QCQP). We explore concave quadratic inequalities that hold for any vector in the integer lattice ${\bf Z}n$, and show that adding these inequalities to a mixed-integer nonconvex QCQP can improve the SDP-based bound on the optimal value. This scheme is tested using several numerical problem instances of the max-cut problem and the integer least squares problem.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.