Papers
Topics
Authors
Recent
2000 character limit reached

Neural Reranking Improves Subjective Quality of Machine Translation: NAIST at WAT2015 (1510.05203v1)

Published 18 Oct 2015 in cs.CL

Abstract: This year, the Nara Institute of Science and Technology (NAIST)'s submission to the 2015 Workshop on Asian Translation was based on syntax-based statistical machine translation, with the addition of a reranking component using neural attentional machine translation models. Experiments re-confirmed results from previous work stating that neural MT reranking provides a large gain in objective evaluation measures such as BLEU, and also confirmed for the first time that these results also carry over to manual evaluation. We further perform a detailed analysis of reasons for this increase, finding that the main contributions of the neural models lie in improvement of the grammatical correctness of the output, as opposed to improvements in lexical choice of content words.

Citations (63)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.