Papers
Topics
Authors
Recent
2000 character limit reached

On locally conformal symplectic manifolds of the first kind (1510.04947v2)

Published 16 Oct 2015 in math.DG, math-ph, math.MP, and math.SG

Abstract: We present some examples of locally conformal symplectic structures of the first kind on compact nilmanifolds which do not admit Vaisman metrics. One of these examples does not admit locally conformal K\"ahler metrics and all the structures come from left-invariant locally conformal symplectic structures on the corresponding nilpotent Lie groups. Under certain topological restrictions related with the compactness of the canonical foliation, we prove a structure theorem for locally conformal symplectic manifolds of the first kind. In the non compact case, we show that they are the product of a real line with a compact contact manifold and, in the compact case, we obtain that they are mapping tori of compact contact manifolds by strict contactomorphisms. Motivated by the aforementioned examples, we also study left-invariant locally conformal symplectic structures on Lie groups. In particular, we obtain a complete description of these structures (with non-zero Lee $1$-form) on connected simply connected nilpotent Lie groups in terms of locally conformal symplectic extensions and symplectic double extensions of symplectic nilpotent Lie groups. In order to obtain this description, we study locally conformal symplectic structures of the first kind on Lie algebras.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.