Papers
Topics
Authors
Recent
2000 character limit reached

Markov Chain Analysis of Cumulative Step-size Adaptation on a Linear Constrained Problem (1510.04409v1)

Published 15 Oct 2015 in math.OC

Abstract: This paper analyzes a (1, $\lambda$)-Evolution Strategy, a randomized comparison-based adaptive search algorithm, optimizing a linear function with a linear constraint. The algorithm uses resampling to handle the constraint. Two cases are investigated: first the case where the step-size is constant, and second the case where the step-size is adapted using cumulative step-size adaptation. We exhibit for each case a Markov chain describing the behaviour of the algorithm. Stability of the chain implies, by applying a law of large numbers, either convergence or divergence of the algorithm. Divergence is the desired behaviour. In the constant step-size case, we show stability of the Markov chain and prove the divergence of the algorithm. In the cumulative step-size adaptation case, we prove stability of the Markov chain in the simplified case where the cumulation parameter equals 1, and discuss steps to obtain similar results for the full (default) algorithm where the cumulation parameter is smaller than 1. The stability of the Markov chain allows us to deduce geometric divergence or convergence , depending on the dimension, constraint angle, population size and damping parameter, at a rate that we estimate. Our results complement previous studies where stability was assumed.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.