Papers
Topics
Authors
Recent
2000 character limit reached

Constrained percolation in two dimensions

Published 14 Oct 2015 in math.PR | (1510.03943v2)

Abstract: We prove absence of infinite clusters and contours in a class of critical constrained percolation models on the square lattice. The percolation configuration is assumed to satisfy certain hard local constraints, but only weak symmetry and ergodicity conditions are imposed on its law. The proofs use new combinatorial techniques exploiting planar duality. Applications include absence of infinite clusters of diagonal edges for critical dimer models on the square-octagon lattice, as well as absence of infinite contours and infinite clusters for critical XOR Ising models on the square grid. We also prove that there exists at most one infinite contour for high-temperature XOR Ising models, and no infinite contour for low-temperature XOR Ising model.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.