Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

On flow polytopes, order polytopes, and certain faces of the alternating sign matrix polytope (1510.03357v2)

Published 12 Oct 2015 in math.CO

Abstract: In this paper we study an alternating sign matrix analogue of the Chan-Robbins-Yuen polytope, which we call the ASM-CRY polytope. We show that this polytope has Catalan many vertices and its volume is equal to the number of standard Young tableaux of staircase shape; we also determine its Ehrhart polynomial. We achieve the previous by proving that the members of a family of faces of the alternating sign matrix polytope which includes ASM-CRY are both order and flow polytopes. Inspired by the above results, we relate three established triangulations of order and flow polytopes, namely Stanley's triangulation of order polytopes, the Postnikov-Stanley triangulation of flow polytopes and the Danilov-Karzanov-Koshevoy triangulation of flow polytopes. We show that when a graph $G$ is a planar graph, in which case the flow polytope $F_G$ is also an order polytope, Stanley's triangulation of this order polytope is one of the Danilov-Karzanov-Koshevoy triangulations of $F_G$. Moreover, for a general graph $G$ we show that the set of Danilov-Karzanov-Koshevoy triangulations of $F_G$ is a subset of the set of Postnikov-Stanley triangulations of $F_G$. We also describe explicit bijections between the combinatorial objects labeling the simplices in the above triangulations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.