Papers
Topics
Authors
Recent
Search
2000 character limit reached

The Fourier-Stieltjes algebra of a C*-dynamical system

Published 12 Oct 2015 in math.OA and math.FA | (1510.03296v2)

Abstract: In analogy with the Fourier-Stieltjes algebra of a group, we associate to a unital discrete twisted C*-dynamical system a Banach algebra whose elements are coefficients of equivariants representations of the system. Building upon our previous work, we show that this Fourier-Stieltjes algebra embeds continuously in the Banach algebra of completely bounded multipliers of the (reduced or full) C*-crossed product of the system. We also introduce a notion of positive definiteness and prove a Gelfand-Raikov type theorem allowing us to describe the Fourier-Stieltjes algebra of a system in a more intrinsic way. After a study of some of its natural commutative subalgebras, we end with a characterization of the Fourier-Stieltjes algebra involving C*-correspondences over the (reduced or full) C*-crossed product.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.