Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 138 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Statistically efficient tomography of low rank states with incomplete measurements (1510.03229v2)

Published 12 Oct 2015 in quant-ph, math-ph, math.MP, and stat.AP

Abstract: The construction of physically relevant low dimensional state models, and the design of appropriate measurements are key issues in tackling quantum state tomography for large dimensional systems. We consider the statistical problem of estimating low rank states in the set-up of multiple ions tomography, and investigate how the estimation error behaves with a reduction in the number of measurement settings, compared with the standard ion tomography setup. We present extensive simulation results showing that the error is robust with respect to the choice of states of a given rank, the random selection of settings, and that the number of settings can be significantly reduced with only a negligible increase in error. We present an argument to explain these findings based on a concentration inequality for the Fisher information matrix. In the more general setup of random basis measurements we use this argument to show that for certain rank $r$ states it suffices to measure in $O(r\log d)$ bases to achieve the average Fisher information over all bases. We present numerical evidence for states upto 8 atoms, supporting a conjecture on a lower bound for the Fisher information which, if true, would imply a similar behaviour in the case of Pauli bases. The relation to similar problems in compressed sensing is also discussed.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube