Rational Singularities and Uniform Symbolic Topologies (1510.02993v2)
Abstract: Take $(R, \mathfrak{m})$ any normal Noetherian domain, either local or $\mathbb{N}$-graded over a field. We study the question of when $R$ satisfies the uniform symbolic topology property (USTP) of Huneke, Katz, and Validashti: namely, that there exists an integer $D>0$ such that for all prime ideals $P \subseteq R$, the symbolic power $P{(Da)} \subseteq Pa$ for all $a >0$. Reinterpreting results of Lipman, we deduce that when $R$ is a two-dimensional rational singularity, then it satisfies the USTP. Emphasizing the non-regular setting, we produce explicit, effective multipliers $D$, working in two classes of surface singularities in equal characteristic over an algebraically closed field, using: (1) the volume of a parallelogram in $\mathbb{R}2$ when $R$ is the coordinate ring of a simplicial toric surface; or (2) known invariants of du Val isolated singularities in characteristic zero due to Lipman.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.